
SYMBOLICS INCORPORATE (U) INFORMATION SYSTEMS AND
TECHNOLOGY CENTER W-P AFS ON ADA VALI 28 MAY 87

UNCLASSIFIED F/G 12/5 U.

iommmmommos

I
lEllEEEll i

111W1 111112.04

11111L25 fj.4 jj16

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A

UNCLASSIFIED
a SEC R Ir T CLASSI TON OF 'HIS PAGE (When Data Entered)F1F .

REPORT DOCUMENTATION PAGE
N REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

0

C . TITLE (andSubtitle) 5. TYPE OF REPORT & PERIOD COVERED

Ada Compiler Validation Summary Report: 20 May 1987 to 20 May 1988
Symbolics Inc. Symbolics Ada Compiler, Version 2.0,

CO Symbolics 3670 6. PERFORMING ORG. REPORT NUMBER

T-
AUTHQR(sL 8. CONTRACT OR GRANT NUMBER(s)

S Wri ght-atterson AFB

. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Ada Validation Facility AREA & WORK UNIT NUMBERS

ASD/SIOL
Wright-Patterson AFB OH 45433-6503

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Ada Joint Program Office 20 May, 1987
United States De artment of Defense 13. NUMBER 1F ALS
Washington, DC 20301-3081 33

14. MONITORING AGENCY NAME & ADDRESS(f different from Controlling Office) 15. SECURITY CLASS (of this report)

Wright-Patterson UNCLASSIFIED
15a. REjS FICATION/DOWNGRADING

* _N/A

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. If different from Report)
~DTIC

UNCLASSIFIED
OIELECTE

18. SUPPLEMENTARY NOTES 'A

D
* 19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

See Attached

DO tu"K 1473 EDITION OF I NOV 65 IS OBSOLETE

1 JAN 73 S/N 0102-LF-014-6601 UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (WhenDataE rerod)

fjo

EXECUTIVE SUMMARY

This Validation Summary Report (VSR) summarizes the results and conclusions
of validation testing performed on the Symbolics Ada Compiler, Version 2.0,
using Version 1.8 of the Ada ®Compiler Validation Capability (ACVC). The
Symbolics Ada Compiler is hosted on a Symbolics 3670 operating under
Genera, Release 7.1. Programs processed by this compiler may be executed
on a Symbolics 3670 cperating under Genera, Release 7.1.

On-site testing was performed 17 May, 1987 through 20 May, 19e7 at the
facilities of Symbolics, Inc. in Cambridge, MA, under the direction of the
Ada Validation Facility (AVF), according to Ada Validation Organization
(AVO) policies and procedures. The AVF identified 2102 of the 2399 tests
in ACVC Version 1.8 to be processed during on-site testing of the compiler.
The 19 tests withdrawn at the time of validation testing, as well as the
278 executable tests that make use of floating-point precision exceeding
that supported by the implementation, were not processed. After the 2102
tests were processed, results for Class A, C, D, and E tests were examined
for correct execution. Compilation listings for Class B tests were
analyzed for correct diagnosis of syntax and semantic errors. Compilation
and link results of Class L tests were analyzed for correct detection of
errors. There were 59 of the processed tests determined to be
inapplicable. The remaining 2043 tests were passed.

The results of validation are summarized in the following table:

RESULT CHAPTER TOTAL
2 3 14 5 6 7 8 _10 11 12 14 -

Passed 93 204 280 240 161 97 134 262 109 32 217 2114 20143

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 23 121 1140 7 0 0 5 0 21 0 1 19 337

* Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19

TOTAL 116 330 425 247 161 98 1140 264 134 32 219 233 2399

The AVF concludes that these results demonstrate acceptable conformity to
* ANSI/MIL-STD-1815A Ada.

®Ada is a registered trademark of the United States Government
*(Ada Joint Program Office).

i

1

AVF Control Number: AVF-VSR-78.0887
87-03-20-SYM

Ada® COMPILER
VALIDATION SUMMARY REPORT:

Symbolics, Inc.
Symbolics Ada Compiler, Version 2.0 i. .

Symbolics 3670 . &

0

Completion of On-Site Testing: .

20 May, 1987
..... ...

Prepared By: F

Ada Validation Facility
ASD/SCOL '

Wright-Patterson AFB OH 45433-6503

Prepared For:
Ada Joint Program Office

United States Department of Defense V

Washington, D.C.

SAda is a registered trademark of the United States Government
(Ada Joint Program Office).

0a m 4 i ~ u jjjjji 11111

I

I

I

Ada® Compiler Validation Summary Report:

Compiler Name: Symbolics Ada Compiler, Version 2.0

Host: Target:
Symbolics 3670 under Symbolics 3670 under

Genera, Release 7.1 Genera, Release 7.1

Testing Completed 20 May, 1987 Using ACVC 1.8

This report has been reviewed and is approved.

Ada Validiion Facility
Georgeanne Chitwood

ASD/SCOL

Wright-Patterson AFB OH 4 5 4 3 3-6 5 03

Ada Validation Organization

Dr. John F. Kramer
Institute for Defense Analyses

Alexandria VA

Ada Jnt Program Office

Virginia L. Castor
Director

Department of Defense
Washington DC

®Ada is a registered trademark of the United States Government

(Ada Joint Program Office).

EXECUTIVE SUMMARY

This Validation Summary Report (VSR) summarizes the results and conclusions
of validation testing performed on the Symbolics Ada Compiler, Version 2.0,
using Version 1.8 of the Ada ®Compiler Validation Capability (ACVC). The
Symbolics Ada Compiler is hosted on a Symbolics 3670 operating under
Genera, Release 7.1. Programs processed by this compiler may be executed
on a Symbolics 3670 operating under Genera, Release 7.1.

On-site testing was performed 17 May, 1987 through 20 May, 1987 at the
facilities of Symbolics, Inc. in Cambridge, MA, under the direction of the
Ada Validation Facility (AVF), according to Ada Validation Organization
(AVO) policies and procedures. The AVF identified 2102 of the 2399 tests
in ACVC Version 1.8 to be processed during on-site testing of the compiler.

'. The 19 tests withdrawn at the time of validation testing, as well as the
278 executable tests that make use of floating-point precision exceeding
that supported by the implementation, were not processed. After the 2102
tests were processed, results for Class A, C, D, and E tests were examined
for correct execution. Compilation listings for Class B tests were
analyzed for correct diagnosis of syntax and semantic errors. Compilation
and link results of Class L tests were analyzed for correct detection of
errors. There were 59 of the rocessed tests determined to be
inapplicable. The remaining 2043 tests were passed.

* The results of validation are summarized in the following table:

RESULT CHAPTER TOTAL
2 3 4 5 6 7 10 11 12 14

Passed 93 204 280 240 161 97 134 262 109 32 217 214 2043

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 23 121 140 7 0 0 5 0 21 0 1 19 337

Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

The AVF concludes that these results demonstrate acceptable conformity to
ANSI/MIL-STD-1815A Ada.

SAda is a registered trademark of the United States Government
(Ada Joint Program Office).

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPCRT 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT 1-2
1.3 REFERENCES .1...................I-3

1.4 DEFINITION OF TERMS 1-3
1.5 ACVC TEST CLASSES 1I-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED 2-1
2.2 IMPLEMENTATION CHARACTERISTICS 2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 3-2
3.4 WITHDRAWN TESTS 3-2
3.5 INAPPLICABLE TESTS 3-2
3.6 SPLIT TESTS 3-4
3.7 ADDITIONAL TESTING INFORMATION 3-4
3.7.1 Prevalidation 3-5
3.7.2 Test Method 3-5
3.7.3 Test Site 3-6

APPENDIX A DECLARATION OF CONFORMANCE

APPEND:X B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

CHAPTER 1

INTRODUCTION

This Validation Summary Report (VSR) describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard

"0 must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies4for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from characteristics of
particular operating systems, hardware, or implementation strategies. All
of the dependencies observed during the process of testing this compiler
are given in this report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation dependent but permitted by the Ada Standard. Six classes of
tests are used. These tevts are designed to perform checks at compile
time, at link time, and during execution.

1-1

'INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

. To attempt to identify any language constructs supported by the
compiler th.t do not conform to the Ada Standard

. To attempt to identify any unsupported language constructs
required by the Ada Standard

" To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc., under the
direction of the AVF according to policies and procedures established by
the Ada Validation Organization (AVO). On-site testing was conducted from
17 May, 1987 through 20 May, 1987 at the Symbolics, Inc. facilities in
Cambridge, MA.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
availatle to the public from:

Ada Information Clearinghouse
Ada Joint Program Office

* OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

0.' Ada Validation Facility
AED/SCOL
Wright-Patterson AFB OH 45433-6503

1-2

11PM JNMM MMt

INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983.

2. Ada Validation Orgnization: Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1986.

4

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. A set of programs
that evaluates the conformity of a compiler to the Ada
language specification, ANSI/MIL-STD-1815A.

Ada Standard ANSI/MIL-STD-1815A, February 1983.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. In the context of this report,
the AVF is responsible for conducting compiler validations
according to established policies and procedures.

AVO The Ada Validation Organization. In the context of this
report, the AVO is responsible for setting procedures for
compiler validations.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test A test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

1-3

4
V.

INTRODUCTION

Inapplicable A test that uses features of the-language that a compiler is
test not required to support or may legitimately support in a way

other than the one expected by the test.

Passed test A test for which a compiler generates the expected result.

Target The computer for which a compiler generates code.

Test A program that checks a compiler's conformity regarding a
particular feature or features to the Ada Standard. In the
context of this report, the term is used to designate a
single test, which may comprise one or more files.

Withdrawn A test found to be incorrect and not used to check conformity
test to the Ada language specification. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

* 1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. However, no checks are performed during execution to see if
the test objective has been met. For example, a Class A test checks that
reserved words of another language (other than those already reserved in
the A-da language) are not treated as reserved words by an Ada compiler. A
Class A test is passed if no errors are detected at compile time and the
program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every
illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT APPLICABLE message indicating the result when it is
executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers

1-4

INTRODUCTION

permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE, PASSED,

or FAILED message when it is compiled and executed. However, the Ada
Standard permits an implementation to reject programs containing some
features addressed by Class E tests during compilation. Therefore, a Class
E test is passed by a compiler if it is compiled successfully and executes
to produce a PASSED message, or if it is rejected by the compiler for an
allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.

V" A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main

* program are elaborated.

Two library units, the package REPORT and the procedure CHECK FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of these units is checked by
a set of executable tests. These tests produce messages that are examined
to verify that the units are operating correctly. If these units are not
operating correctly, then the validation is not attempted.

The text of the tests in the ACVC follow conve:ntions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation.

1-5

SkL

INTRODUCTION

Any test that was determined to contain an illegal language construct or an
erroneous language construct is withdrawn from the ACVC and, ther'efore, is
not used in testing a compiler. The tests withdrawn at the time of
validation are given in Appendix D.

"1-

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:

Compiler: Symbolics Ada Compiler, Version 2.0

7. ACVC Version: 1.8

Certificate Number: 870518W1.08062

Host Computer:

Machine: Symbolics 3670

Operating System: Genera,
Release 7.1

Memory Size: 2048 kilowords

Target Computer:

* Machine: Symbolics 3670

Operating System: Genera,

Release 7.1

Memory Size: 2048 kilowords

.

2-1

*1

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes -f "-!dating compilers is to ;etermine the
behavior of a compiler in those areas of the Aaa Standard that
permit implementations to differ. Class D and E tests specifically
check for such implementation differences. However, tests in other

• .',classes also characterize an implementation. This compiler is
characterized by the following interpretations of the Ada Standard:

. Capacities.

The compiler correctly processes tests containing loop

statements nested to 65 levels, block statements nested to 65
levels, and recursive procedures separately compiled as
subunits nested to 17 levels. It correctly processes a
compilation containing 723 variables in the same declarative
part. (See tests D55AO3A..H (8 tests), D56001B, D64005E..G (3
tests), and D29002_K.)

* . Universal integer calculations.

:-1 An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX INT. This
implementation does not reject such calculations and processes
them correctly. (See tests D4A0O2A, D4A0O2B, D4AO04A, and

DA0. Predefined types.

This implementation supports no additional predefined types in
the package STANDARD.

. Based literals.

An implementation is allowed to reject a based literal with a
* value exceeding SYSTEM.MAX INT during compilation, or it may

raise NUMERIC ERROR or CONSTRAINT ERROR during execution. This

implementation raises NUMERIC ERROR during execution. (See
test E24101A.)

. Array types.

An implementation is allowed to raise NUMERICERROR or
p. CONSTRAINTERROR for an array having a 'LENGTH that exceeds

STANDARD. INTEGER'LAST and/or SYSTEM.MAXINT. For this

implementation:

2-2

4Jd

CONFIGURATION INFORMATION

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises STORAGE ERROR when the array objects are declared. (See
test C52103X.)

A packed two-dimensional BOOLEAN array with more than

INTEGER'LAST components raises STORAGE ERROR when the array
objects are declared. (See test C52104Y.)

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC ERROR or CONSTRAINT ERROR either
when declared or assigned. Alternatively, an implementation
may accept the declaration. However, lengths must match in
array slice assignments. This implementation raises no
exception. (See test E52103Y.)

In assigning one-dimensional array types, the expression
appears to be evaluated in its entirety before CONSTRAINTERROR
is raised when checking whether the expression's subtype is
compatible with the target's subtype. In assigning
two-dimensional array types, the expression does not appear to
be evaluated in its entirety before CONSTRAINTERROR is raised
when checking whether the expression's subtype is compatible

0. with the target's subtype. (See test C52013A.)

Discriminated types.

During compilation, an implementation is allowed to either
accept or reject an incomplete type with discriminants that is
used in an access type definition with a compatible
discriminant consuraint. This implementation accepts such
subtype indications. (See test E38104A.)

In assigning record types with discriminants, the expression
appears to be evaluated in its entirety before CONSTRAINT ERROR
is raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

0 Aggregates.

In the evaluation of a multi-dimensional aggregate, the order
in which choices are evaluated and index subtype checks are
made appears to depend upon the aggregate itself. (See tests
C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, all
choices are not evaluated before being checked for identical
bounds. (See test E43212B.)

All choices are evaluated before CONSTRAINT ERROR is raised if
a bound in a nonnull range of a nonnull aggregate does not
belong to an index subtype. (See test E43211B.)

2-3

CONFIGURATION INFORMATION

. Functions.

An implementation may allow the declaration of a parameterless

function and an enumeration literal having the same profile in

the same immediate scope, or it may reject the function
declaration. If it accepts the function declaration, the use

of the enumeration literal's identifier denotes the function.

This implementation rejects the declaration. (See test

E66001D.)

• Representation clauses.

The Ada Standard does not require an implementation to support

representation clauses. If a representation clause is not
supported, then the implementation must reject it. While the

operation of representation clauses is not checked by Version

1.8 of the ACVC, they are used in testing other language
features. This implementation rejects 'SIZE and 'STORAGESIZE
for tasks, 'STORAGESIZE for collections, and 'SMALL clauses.

Enumeration representation clauses appear not to be supported.

(See tests C55B16A, C87B62A, C87B62B, C87B62C, and BC1002A.)

. Pragmas.

The pragma INLINE is not supported for procedures or for
functions. (See tests CA3004E and CA3004F.)

• Input/output.

The package SEQUENTIAL_10 cannot be instantiated with
unconstrained array types and record types with discriminants.
The package DIRECT 10 cannot be instantiated with unconstrained
array types and record types with discriminants without
defaults. (See tests AE2101C, AE2101H, CE2201D, CE2201E, and
CE2401D.)

An existing text file can be opened in OUTFILE mode, can be
6created in OUT FILE mode, and cannot be created in INFILE

mode. (See test EE3102C.)

More than one internal file can be associated with each
external file for text I/O for reading only. The

* implementation does not allow more than one internal file to be
associated with a single external file if one of the internal
files has mode OUT-FILE or INOUTFILE. (See tests CE3111A..E
(5 tests).)

More than one internal file can be associated with each

external file for sequential I/O for reading only. The

implementation does not allow more than one internal file to be

2-4

Jil

CONFIGURATION INFORMATION

associated with a single external file if one of the internal
files has mode OUTFILE or INOUTFILE. (See tests CE2107A..F
(6 tests).)

More than one internal file can be associated with each
external file for direct I/O for reading only. The
implementation does not allow more than one internal file to be
associated with a single external file if one of the internal
files has mode OUTFILE or INOUTFILE. (See tests CE2107A..F
(6 tests).)

Temporary sequential files are given names. Temporary direct
files are given names. Temporary files given names are deleted
when they are closed. (See tests CE2108A and CE2108C.)

. Generics.

Generic subprogram declarations and bodies cannot be compiled
in separate compilations. (See test CA2009F.)

*Generic package declarations and bodies cannot be compiled in
separate compilations. (See tests CA2009C and BC3205D.)

A subunit of a generic unit must be compiled in the same
compilation as the parent. (See test LA5008G.)

12

2-5

4):

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.8 of the ACVC contains 2399 tests. When validation testing of
the Symbolics Ada Compiler was performed, 19 tests had been withdrawn. The
remaining 2380 tests were potentially applicable to this validation. The
AVF determined that 337 tests were inapplicable to this implementation, and
that the 2043 applicable tests were passed by the implementation.

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMiARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
_ _A B C D E L

Passed 67 860 1055 17 11 33 2043

Failed 0 0 0 0 0 0 0

* Inapplicable 2 7 313 0 2 13 337

Withdrawn 0 7 12 0 0 0 19

TOTAL 69 874 1380 17 13 46 2399

3-1

161
:Maw kuw !

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

2 4 5 6 7 8 9 10 11 12 14

Passed 93 204 280 240 161 97 134 262 109 32 217 214 2043

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 23 121 140 7 0 0 5 0 21 0 1 19 337

Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

3.4 WITHDRAWN TESTS

The following 19 tests were withdrawn from ACVC Version 1.8 at the time of
0this validation:

C32114A C41404A B74101B
B33203C B45116A C87B50A
C34018A C48008A C92005A
C35904A B49006A C940ACA
B37401A B4A010C CA3005A..D (4 tests)

BC3204C

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may

*0 depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation is not necessarily inapplicable for a subsequent attempt. For
this validation attempt, 337 tests were inapplicable for the reasons
indicated:

C34001D, B52004E, B55BO9D, and C55B07B use SHORTINTEGER which is
not supported by this compiler.

C34001E, B52004D, B55B09C, and C55BO7A use LONG INTEGER which is
not supported by this compiler.

3-2

, .. ,. - .

. C34001F and C35702A use SHORT FLOAT which is not supported by this
compiler.

. C34001G and C35702B use LONG-FLOAT which is not supported by this
compiler.

. C55B16A makes use of an enumeration representation clause
containing noncontiguous values which is not supported by this
compiler.

. B86001D requires a predefined numeric type other than those
defined by the Ada language in package STANDARD. There is no such
type for this implementation.

. C86001F redefines package SYSTEM, but TEXT 10 is made obsolete by
this new definition in this implementation and the test cannot be
executed since the package REPORT is dependent on the package
TEXT 10.

. C87B62A..C (3 tests) use length clauses which are not supported by
this compiler. The length clause is rejected during compilation.

. BA1011C, CA1012A, CA2009C, CA2009F, LA5008A..H (8 tests), LA500BJ,
LA5OO8M, LA5OO8N, and BC3205D compile generic declarations and
bodies in separate files or compile subunits of generic units in
different files from their parents which is not supported by this
compiler.

. CA3004E, EA3004C, and LA3004A use INLINE pragma for procedures
which is not supported by this compiler.

. CA3004F, EA3004D, and LA3004B use INLINE pragma for functions
which is not supported by this compiler.

LA50081 and LA5008K are inapplicable because, in this
implementation, a generic unit is made obsolete by the
recompilation of a unit on which the generic body (but not the
specification) depends. Since this implemen.ation does not
support separate compilation of generic unit specifications and
bodies, a generic specification must be considered obsolete
whenever the body is found to be obsolete. These tests should

0 report at link time that the body of a generic unit is obsolete.
However, a compile-time error message reports that the generic
unit is obsolete.

. AE2101C, CE2201D, and CE2201E use an instantiation of package
SEQUENTIAL 10 with unconstrained array types which is not
supported by this compiler.

AE2101H and CE2401D use an instantiation of package DIRECT 10 with
unconstrained array types which is not supported by this compiler.

3-3

TEST INFORMATION

" CE2102D and CE2102I are applicable only to implementations which

do not support mode IN FILE for SEQUENTIAL_10 or for DIRECTIO.
This implementation supports this mode in each case.

" CE21071..E (4 tests), CE2110B, CE2111D, CE2111H, CE3111B..E (4

tests), and CE3114B are inapplicable because multiple internal

files cannot be associated with the same external file when one

has mode OUT FILE or INOUTFILE. The proper exception is raised
when multiple access is attempted.

" The following 278 tests require a floating-point accuracy that
exceeds the maximum of 6 supported by the implementation:

C24113C..Y (23 tests)
C35705C..Y (23 tests)
C35706C..Y (23 tests)
C35707C..Y (23 tests)
C35708C..Y (23 tests)
C35802C..Y (23 tests)
C45241C..Y (23 tests)
C45321C..Y (23 tests)
C45421C..Y (23 tests)
C45424C..Y (23 tests)
C45521C..Z (24 tests)
C45621C..Z (24 tests)

3.6 SPLIT TESTS

If one or more errors do not appear to have been detected in a Class B test
because of compiler error recovery, then the test is split into a set of
smaller tests that contain the undetected errors. These splits are then
compiled and examined. The splitting process continues until all errors
are detected by the compiler or until there is exactly one error per split.
Any Class A, Class C, or Class E test that cannot be compiled and executed
because of its size is split into a set of smaller subtests that can be
processed.

Splits were required for 6 Class B tests:

B97101E BA3006B BA3007B

BA3008A BA3008B BA3013A

3.7 ADDITIONAL rESTING INFORMATION

3-4

TEST INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.8 produced by
the Symbolics Ada Compiler was submitted to the AVF by the applicant for
review. Analysis of t.e- esults demonstrated that the compiler
successfully passed all applicable tests, and that the compiler exhibited
the expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the Symbolics Ada Compiler using ACVC Version 1.8 was conducted
on-site by a validation team from the AVF. The configuration consisted of
a Symbolics 3670 operating under Genera, Release 7.1.

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on-site by the
validation team for processing. Tests that make use of
implementation-specific values were customized after arriving at the
validation site. Tests requiring splits during the prevalidation testing
were included in their split form on the magnetic tape.

* The contents of the magnetic tape were loaded directly onto one of the host
computers, with some of the tests being distributed to the other hosts via
the CHAOS network. After the test files were loaded to disk, the full set
of tests was compiled and linked on the Symbolics 3670, all executable
tests were run, and the results were printed.

The compiler was tested using command scripts provided by Symbolics, Inc.
and reviewed by the validation team. The following option was in effect
for testing:

Option Effect

Compile to Memory Rather than creating a disk file containing
an executable image, the image is created
in memory.

Tests were compiled, linked, and executed (as appropriate) using three host
* computers. Test output, compilation listings, and job logs were captured

on magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

3-5

TEST INFORMATION

3.7.3 Test Site

The validation team arrived at the Symbolics, Inc. facility at Cambridge,
MA on 17 May, 1987, and departed after testing was completed on 20 May,
1987.

3-6

APPENDIX A

DECLARATION OF CONFORMANCE

Symbolics, Inc. has submitted the following
declaration of conformance concerning the Symbolics Ada
Compiler.

A-1

DECLARATION OF CONFORMANCE

Compiler Implementor: Symbolics, Inc.
eAda Validation Facility: ASD/SCOL, Wright-Patterson AFB, OH

Ada Compiler Validation Capability (ACVC) Version: 1.8

Bass Confi uratlon

Base Compiler Name: Version:

Symbolics Ada Compiler Version 2.0

Host Architecture ISA: Host Operating System:
symbolics 3670 Genera, Release 7.1

Target Architecture ISA: Target Operating System:
Symbolics 3670 Genera, Release 7.1

Implementor' a Declaration

I, the undersigned, representing Symbolics, Inc., have implemented no
deliberate extensions to the Ada Language Standard ANSI/MIL-STD-1815A in
the compiler(s) listed in this declaration. I declare that Symbolics, Inc.
is the owner of record of the Ada language compiler(s) listed above and, as
such, is responsible for maintaining said compiler(s) in conformance to
ANSI!MIL-STD-1815A. All certificates and registrations for Ada language
compiler(s) listed in this declaration shall be made only in the owner's

6 corporate name.

___, __ Date: ___
Symbolics,/In . /
Bradley Gold tein, Program Manager

Owner's Declaration

I, the undersigned, representing Symbolics, Inc., take full responsibility
for implementation and maintenance of the Ada compiler(s) listed above, and
agree to the public disclosure of the final Validation Summary Report. I
further agree to continue to comply with the Ada trademark policy, as
defined by the Ada Joint Program Office. I declare that all of the Ada

language compilers listed, and their host/target performance are in
compliance with the Ada Language Standard ANSI/MIL-STD-1815A. I have
reviewed the Validation Summary Report for the compiler(-) and concur with
the contents.

./ /2A(e Date: (2K)
Symbolics, tnc/
Bradoley Goldtein, Program Manager

I

Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

-

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-
dependent pragmas, to certain machine-dependent conventions as mentioned in
chapter 13 of MIL-STD-1815A, and to certain allowed restrictions on
representation clauses. The implementation-dependent characteristics of
the Symbolics Ada Compiler, Version 2.0, are described in the following
sections which discuss topics in Appendix F of the Ada Language Reference
Manual (ANSI/MIL-STD-1815A). Implementation-specific portions of the
package STANDARD are also included in this appendix.

package STANDARD is

type INTEGER is range -2_147_483_648 .. 2_147_483647;

type FLOAT is digits 6 range -1.70141E+38 .. 1.70141E+38;

type DURATION is delta 2.0 ** (-14) range -86_400.0 .. 86_400.0;

end STANDARD;

B-1

Implementation-Dependent Characteristics: Appendix F to the Reference

Manual for the Ada Programming Language

L Implementation-dependent pragmas

The compiler supports pragma INTERFACE to Lisp with no restrictions on
the type of the parameters or the return values.

2. Implementation-dependent attributes

There are no implementation-dependent attributes.

3. Specification of Package SYSTEM

package Systm is

SUBTYPZ Byte is Natural range 0 .. 255;

TYPZ Address is ACCISS Integer;
TYPE SubproramValue is PRIVAE;

TYPE Name is (Symbolics Ada);

System Naze :COKSTAIIT name :z Symbolc- Ada;

Storage Unit :CSTAN! := 8;
Memor 7 -ait :CISTANT :m (2 ** 31) -1;

m-- Syate-Dependent Named lumbers:

Kin mt :COSTANT := -(2 31);
Mai-Int :C STANT := (2 ** 31)-l;
Maxbigits :CONSTANT := 6;
Mai-kaitissa :CCUSTAT :w 31;
FTii delta :CONSTANT :a 1.0 / (2 ** (Max Mantissa -1));
Tick- :COSTAT := 10.01-3;

-Other Systim-Dependent Declarations

SUBTYPZ Priority IS Integer RANTZ 0 .. 63;

Max Object Size :CONSTNT :w Max Int;
Maz-.ecord-Count :CONSTN :T Max-Int;
Ma-Text Zo Count :CONSTANT :=(2 T* 15)-1;
Max-elzt:-o-Field :CONSTANT : 1000;

PRLIVATE
TYPE Subprogram Value is
record

Proc addr Address;
StatTc link Address;
Global-frame :Address;

end record;-

B-20. ed:€t

/npd.mentaon-Depend&n CharacaUcsh: Appwpied F to fhe Refewtce Manua for U Ada Progamminug LaiVng 2

ERUD Syr .- ,;

4. Restrictions on representation clauses

There is no support for representation clauses.

5. Implementation-dependent naming conventions

There are no implementation-generated names denoting
implementation-dependent components.

6. Interpretation of expressions in address clauses

There is no support for address clauses.

7. Restrictions on unchecked conversions

Unchecked conversions are allowed between variables of types (or subtypes)
Ti and T2, provided they meet these three requirements:

* They have the same static size

* They are not unconstrained array types

* They are not private (unless they are subtypes of, or are derived from, a
private type SYSTEMADDRESS)

. Input-Output package characteristics

Instantiations of DIRECT 10 and SEQUENTIAL lO are supported with the
following exceptions:

o unconstrained array types unconstrained types with discriminants without
default values

Multiple internal files opened to the same external file may be opened for
reading.

Calling CREATE with the name of an existing external file does not raise an
exception but creatcs a new version of the file.

In DIRECTIO, the type count is defined as follows:

type COUNT is range 0 .. 2147483647;

In TEXT IO, the type COUNT is defined as follows:

type COUNT is range 0 .. 32766;

In TEXT 10, the subtype FIELD is defined as follows:

subtype FIELD is INTEGER range 0 .. 1000;

B-3

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below.

Name and Meaning Value

$BIGIDI (1..199 => 'A', 200 => '1')
Identifier the size of the
maximum input line length with
varying last character.

$BIGID2 (1..199 => 'A', 200 => '2')
Identifier the size of the
maximum input line length with
varying last character.

$BIGID3 (1..100 => 'A', 101 => '3',
Identifier the size of the 102..200 => 'A')
maximum input line length with
varying middle character.

$BIGID4 (1..100 => 'A', 101 => '4',
Identifier the size of the 102..200 => 'A')
maximum input line length with
varying middle character.

$BIGINTLIT (1..197 => '0', 198..200 => "298")
An integer literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

c-1

TEST PARAMETERS

Name and Meaning Value

$BIGREAL LIT (1..194 => '0',
A real literal that can be 195..200 :> "69.OE1")
either of floating- or fixed-
point type, has value 690.0, and
has enough leading zeroes to be
the size of the maximum line
length.

$BLANKS (1..180 => '

A sequence of blanks twenty
characters fewer than the size
of the maximum line length.

$COUNTLAST 32766
A universal integer literal
whose value is TEXTIO.COUNT'LAST.

$EXTENDEDASCII CHARS "abcdefghijklmnopqrstuvwxyz" &
A string literal containing all
the ASCII characters with
printable graphics that are not
in the basic 55 Ada character
set.

$FIELDLAST 1000
A universal integer literal
whose value is TEXTIO.FIELD'LAST.

$FILE NAME WITH BAD CHARS foo.a.b.c

An illegal- external file name
that either contains invalid
characters, or is too long if no

invalid characters exist.

$FILENAME WITH WILD CARD CHAR "eno:>testing>ada>c-tests>c*.*. * "

An external file name that
either contains a wild card
character, or is too long if no
wild card character exists.

$GREATERTHANDURATION 86_401.0
A universal real value that lies
between DURATION'BASE'LAST and

10. DURATION'LAST if any, otherwise

any value in the range of
~DURATION.

$GREATERTHANDURATION BASE LAST 131072.0
The universal real value that is
greater than DURATION'BASE'LAST,

if such a value exists.

C-2

TEST PARAMETERS

Name and Meaning Value

$ILLEGAL EXTERNAL FILE NAMEl "foo.a.b.c.d"
An iflegal external file name.

$ILLEGALEXTERNAL_FILE NAM-2 "foo.b.c.d"

An illegal external file name
that is different from
$ ILLEGALEXTERNALFILENAME 1.

$INTEGERFIRST -21 47483_648
The universal integer literal
expression whose value is
INTEGER' FIRST.

$INTEGER LAST 2 147_483_647
The universal integer literal
expression whose value is
INTEGER' LAST.

$LESS THAN DURATION -86_401.0
A universal real value that lies

0 between DURATION'BASE'FIRST and

DURATION'FIRST if any, otherwise
any value in the range of

DURATION.

$LESS THAN DURATION BASE FIRST -131_072.0
The universal real value that is
less than DURATION'BASE'FIRST,
if such a value exists.

$MAXDIGITS 6
The universal integer lite: al
whose value is the maximum
digits supported for
floating-point types.

$MAX IN LEN 200
The univers& inceger literal
whose value is the maximum
input line length permitted by
the implementation.

$MAXINT 2_147_483_647

The universal integer literal
whose value is SYSTEM.MAXINT.

C-3

TEST PARAMETE-..

Name and Meaning Value

$NAME LONGLETTERINTEGER

A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT FLOC;T, SHORTINTEGER,
LONGFLOAT, or LONG INTEGER
if one exists, otherwise any
undefined name.

$NEG BASED INT 16FFFFFFFE#
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAXINT.

$NONASCIICHARTYPE (NONNULL)
An enumerated type definition
for a character type whose
literals are the identifier
NON NULL and all non-ASCII
characters with printable

*. graphics.

I

C-41

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the

Ada Standard. The following 19 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form

"AI-ddddd" is to an Ada Commentary.

" C32114A: An unterminated string literal occurs at line 62.

• B33203C: The reserved word "IS" is misspelled at line 45.

. C34018A: The call of function G at line 114 is ambiguous in the

presence of implicit conversions.

" C35904A: The elaboration of subtype declarations SFX3 and SFX4

may raise NUMERICERROR instead of CONSTRAINTERROR as expected in
the test.

" B37401A: The object declarations at lines 126 through 135 follow
subprogram bodies declared in the same declarative part.

* C41404A: The values of 'LAST and 'LENGTH are incorrect in the if
statements from line 74 to the end of the test.

B45116A: ARRPRIBL1 and ARRPRIBL2 are initialized with a value of

the wrong type--PRIBOOLTYPE instead of ARRPRIBOOLTYPE--at line
41.

. C48008A: The assumption that evaluation of default initial values

occurs when an exception is raised by an allocator is incorrect
*according to AI-00397.

B49006A: Object declarations at lines 41 and 50 are terminated
incorrectly with colons, and end case; is missing from line 42.

B4AO10C: The object declaration in line 18 follows a subprogram
body of the same declarative part.

D-1

I

WITHDRAWN TESTS

. B74101B: The begin at line 9 causes a declarative part to be
treated as a sequence of statements.

• C87B50A: The call of "/=" at line 31 requires a use clause for
package A.

" C92005A: The "/=" for type PACK.BIGINT at line 40 is not visible
without a use clause for the package PACK.

C940ACA: The assumption that allocated task TT will run prior to
the main program, and thus assign SPYNUMB the value checked for by
the main program, is erroneous.

" CA3005A..D (4 tests): No valid elaboration order exists for thesetests.

BC3204C: The body of BC3204C0 is missing.

D-2

lp

